














also important. We therefore investigated if PLGA
submicron particles, containing chloroquine and TNF-a
siRNA (PLGA–chloroquine–TNF-a siRNA), could also
deliver siRNA to Kupffer cells in vivo, and compared their
efficacy to the PKCNs. Figure 5A and B demonstrates
that the acid sensitivity of the PKCNs is critical for
in vivo efficacy, for example at a TNF-a siRNA dose of

3.5 mg/kg, PKCN–TNF-a siRNA-reduced serum ALT
levels by 59.0% and serum TNF-a values by 96.0%,
whereas PLGA–chloroquine–TNF-a siRNA had no
effect presumably, because of their slower hydrolysis
kinetics (16,17). At the same siRNA concentration,
Lipofectamine–TNF-a siRNA had no effect on ALT
and TNF-a levels.
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Figure 4. The PKCNs enhance the delivery of siRNA in vivo. Mice were injected with LPS (2.5 mg/kg) and GalN (700mg/kg) i.p. to induce acute
liver failure and injected with siRNA samples (35 mg/kg siRNA) via the jugular vein. The livers and blood of the mice were collected and assayed at
24 h after siRNA treatment. (A) PKCNs containing TNF-a siRNA reduce TNF-a levels in the serum to baseline levels (ELISA assay; TNF-a
concentration in serum) (mean±SE). Significance of results was determined via the paired t-test between the PKCN–TNF-a siRNA and other
delivery vehicles with P< 0.05 (asterisks). (B) PKCNs containing TNF-a siRNA reduce the serum ALT values (mean±SE). Significance of results
was determined via the paired t-test between the PKCN–TNF-a siRNA and other delivery vehicles with P< 0.05 (asterisks). (C) Liver histology
study using hematoxylin and eosin staining (tissue thickness sliced: 10 mm; magnification objectives: �40) indicates that only PKCNs with TNF-a
siRNA can protect the liver from LPS-induced liver damage.
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Kupffer cells (liver macrophages) play a key role in the
development of acute liver failure. The ability of the
PKCNs to target Kupffer cells in vivo was therefore deter-
mined using PKCNs that encapsulated the fluorescent dye
DiI. DiI–PKCNs were injected into mice via the jugular
vein, and after 2 h the mice were harvested and analyzed
by histology for Kupffer cell staining. Figure 5C
demonstrates that the DiI–PKCNs are localized in
Kupffer cells after a systemic injection of DiI–PKCNs,

whereas DiI–PKCNs (orange color) were not found in
hepatocytes (dark area—no green color).
In summary, in this report we present a new siRNA

delivery vehicle termed as the PKCNs, which can effi-
ciently deliver siRNA to macrophages in vivo. In
contrast to delivery vehicles composed of cationic lipids
or polycations, the PKCNs are ‘hard’ materials composed
of water-insoluble polymers and have a strong thermo-
dynamic driving force to maintain their integrity in vivo.
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Figure 5. The PKCNs can deliver siRNA with high efficiency in vivo and the acid sensitivity of the PKCNs is critical for in vivo efficacy. Mice were
injected with LPS (2.5 mg/kg) and GalN (700mg/kg) i.p. to induce acute liver failure and injected with siRNA samples (3.5 mg/kg siRNA) via the
jugular vein. Serum TNF-a concentration and ALT activity were measured at 24 h after treatment with siRNA samples. Significance of results was
determined via the paired t-test between the PKCN–TNF-a siRNA and other delivery vehicles with P< 0.05 (asterisks). (A) The PKCNs reduced
serum TNF-a values, whereas PLGA submicron particles had no effect. TNF-a concentration in the plasma was measured by ELISA (mean±SE).
(B) The PKCNs reduced serum ALT levels (mean±SE), whereas PLGA submicron particles had no effect. (C) The PKCNs were localized in
Kupffer cells. FITC-labeled F4/80 antibody (Pan macrophage marker) was used for Kupffer cell staining. DiI-loaded PKCNs (orange color) were
taken up by Kupffer cells (green color) in vivo—white arrows. No PKCNs were found in hepatocytes—dark area (no green color). The picture was
imaged by fluorescence microscopy (�20).
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The PKCNs are acid sensitive, and hydrolyze after
phagocytosis in the acidic environment of the phagosome,
allowing them to rapidly release siRNA after cell internal-
ization and potentially disrupt the phagosome through a
colloid osmotic mechanism. The PKCNs were able to
deliver TNF-a siRNA to Kupffer cells (liver macrophages)
in vivo and rescue hepatocytes from LPS-induced toxicity
at an siRNA dose of 3.5 mg/kg. Based on these obser-
vations, we anticipate numerous uses of the PKCNs for
siRNA delivery to macrophages in vivo.
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